Molecular characterization of Clostridium perfringens in small ruminants
Hams M.A. Mohamed¹, Manar M.H. Elfeky²*, M.W. Abd Al-Azeem¹, Faysal A. Wasel²
¹Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt, ²Department of Microbiology, Animal Health Research Institute, Sohag, Egypt

Abstract
A significant foodborne pathogen as Clostridium perfringens (C. perfringens) has been linked to many diseases in sheep and goat, included; Enterotoxaemia, pulpy kidney disease, struck, and even animal mortality. So, The objective of this study is to discuss the presence of C. perfringens in small ruminants with focusing on the virulence factors, antimicrobial resistance profile, and biofilm-forming capacities of the organism. A total 166 samples, (95 from sheep, 71 from goats) collected from apparently healthy, diarrheic animals and dead carcasses suspected to be infected with enterotoxaemia in Sohag, Egypt. These samples were subjected for Animal health research institute lab for microbiological examination. The phenotypic identification revealed that 25 isolates (15.1%) were Clostridium spp. 10 isolates were identified as C. perfringens by PCR using a species-specific 16S rRNA gene. The results of multiplex PCR, revealed that the cpa gene, which is responsible for C. perfringens toxitype A, had the highest prevalence (90%) followed by the cpe gene, which is responsible for type F, while none of the isolates had the cpb, etx, and iap genes. Phenotypically, the majority of the isolates displayed multidrug resistance (MDR) patterns for, vancomycin, tetracycline, oxacillin, and piperacillin, erythromycin and ceftazidime and whereas genetically, our isolates had the bla(70%), ermB (40%) and tetK (30%) genes. Our isolates demonstrated a moderate (10%) and weak (60%) ability to form biofilm.

Keywords: C. perfringens, small ruminants, toxigenic genes, resistance genes, biofilm.
Introduction

The majority of enteric infections, often known as enterotoxaemia, in sheep and goats were caused by \textit{C. perfringens}. This microbe is typically present in the intestinal flora of both humans and animals (Pawaiya et al., 2020), but under exceptional conditions where the physiological balance of the intestine is disturbed, it can proliferate rabidly and cause disorders related to a variety of toxins (Bourlioux et al., 2003).

\textit{C. perfringens} is typical gram-positive, anaerobic, non-motile, rod-shaped, and endospore-forming bacteria, can be found in soil, dust, waste water, dung, feed, and sheep litter (Songer, 1996; Juneja et al., 2011). Seven serotypes of \textit{C. perfringens} can be distinguished (A–G), the major serotypes were (A–E). Based on the production of certain exotoxins (alpha, beta, epsilon, and iota) (Yoo et al., 1997). The (α) toxin is produced by a plasmid-mediated \textit{cpa} gene and is linked to \textit{C. perfringens} serotype A as well as all other serotypes (Cooper et al., 2010). The serotype B also possesses the plasmid-mediated genes \textit{cpb} and \textit{etx} respectively, which encode for the β and ε toxins. Moreover, the β and ε toxins and are linked to serotypes C and D, respectively (Chen et al., 2011). Serotype E possesses the plasmid-mediated \textit{iap} gene, which produces the (ι) toxin (Park et al., 2015). The genes that create \textit{C. perfringens} enterotoxin (CPE) and \textit{C. perfringens} beta2 toxin (CPB2) can be found in all serotypes (Uzal et al., 2010).

\textit{C. perfringens} type A is the most frequently isolated type in sheep and goat enterotoxaemia, whereas \textit{C. perfringens} type D is the principal reasons of ovine enterotoxaemia (Karthik et al., 2017). These types are responsible for secreting various toxins that act locally within the intestine to cause a necrotizing and hemorrhagic enteritis, pulpy kidney, struck, lamb dysentery in sheep and goat (Uzal et al., 2010). They also caused numerous severe enterotoxemic diseases in domestic animals and food poisoning in human (Souza et al., 2010).

According to recent investigations, most strains of \textit{C. perfringens} were MDR strains (Ngamwongsatit et al., 2016). The incidence of Clostridial disease in ruminants is increased by high frequencies of these strains (Raymond and Hall, 2018). The two basic antimicrobial resistance mechanisms of \textit{C. perfringens} involve mutation of intrinsic genes or acquisition of resistance gene(s) (Hall et al., 2004). Tetracycline resistance was usually provided by the \textit{TetA} (P) protein, which regulates tetracycline active efflux (Bannam et al., 2004). It's notable that the presence of β-lactamase (\textit{bla} gene) caused greater minimum inhibitory concentration (MIC) values for ciprofloxacin and amoxicillin to exist (Ali et al., 2021). The \textit{erm} gene may function similarly in the macrolide-resistant \textit{C. perfringens}, acting as a reservoir and facilitating its conjugal transmission (Soge et al., 2009).

According to severa researches, employing low doses of antibiotics results in the formation of bacterial biofilms (Kaplan, 2011). Successful biofilm formation has been shown to depend on both \textit{C. perfringens} Type IV pilus (TFP)-dependent entgliding motility and the catabolite control protein (CcpA), a key regulator of the response to carbohydrate limitation (Donelli et al., 2012; Charlebois et al., 2014). Biofilm formation cells have survival rate over planktonic cells after
exposure to penicillin and an increased survival to environmental stresses (Varga et al., 2008).

Owing to the increase in the emerging threat of C. perfringens infections in small ruminants, we explored the detection and identification of C. perfringens in different organs and fecal samples of sheep and goat and spotlighted the evolution hazards of biofilm formation and wide spread of MDR strains phenotypes and genotypes.

Material and Methods

Ethical approval:

This work was performed in accordance with laws and ethical guidelines of the South Valley University National Ethics Committee. All procedures were carried out in conformity with all applicable rules and regulations. No. 86/19.10.2022

Sampling

Cases history

The history of the cases used in this study were collected for both diseased and apparently healthy cases prior to sample collection. Clinical signs of the disease include recumbence, mild to severe (blood-tinted to bloody) diarrhoea, stomach pain, and bloating. In other instances, intestinal inflammation, ulceration, and necrosis with watery fluid, blood, and fibrinous clots were also present alongside death. The supposedly healthy cases exhibited no clinical symptoms.

Collection of Samples

In Sohag province, a total of 166 samples included; fecal, Liver, Kidney, and intestinal samples were collected from 80 sheep and 60 goats in different localities farms. Out of the 80 sheep, 48 fecal sample was collected from apparently healthy, 22diarrheal samples from infected sheep while; 9 Liver, 6 Kidney, and 10 intestines were collected from 10 carcasses. Among 60 goats, 27 fecal samples were collected from healthy cases and 25 diarrheal samples from diseased cases while 8 liver, 3 kidneys and 8 intestinal samples were collected from 8 dead animals. These samples were taken aseptically, then placed in a buffer saline and transferred to the lab in an ice tank.

Isolation and identification of C. perfringens

Isolation and identification steps were done according to (Nazki1 et al.,2017). Briefly, 1gm of each sample was inoculated into 9 mL Robertson’s cooked meat broth (RCMB) (Hi media Labs, Mumbai, India) (Robertson, 1916), inoculated tubes incubated anaerobically at 37 °C for 18-24 hours. 1 ml from previously inoculated broth was streaked onto tryptose sulfite cycloserine (TSC) agar (Hi media Labs, Mumbai, India) plates, at 37°C for 24 h in an anaerobic jar, with gas generating kits (Oxoid,). Suspected colonies were cultured onto 5% sheep blood agar with 200ug/ml neomycin sulphate under anaerobic condition at 37 °C for 24 hours. Suspected colonies were subjected for biochemical scheme according to (Macfaddin, 2000)

Molecular confirmation of C. perfringens using 16S rRNA Gene

species specific gene primers

DNA extraction:

DNA was extracted using QIAaamp DNA Mini Kite according manufacturer’s instructions the extracted DNA were stored at -20 °C.

PCR analysis

The PCR procedure was conducted in accordance with Wu et al. (2009) in a total volume of 25µl, composed of 12.5µl of Emerald Amp GT master mix (Takara,
Code No. RR310A, 5.5 µl of nuclease-free water, 5 µl of DNA template, and 1µl of primer set. The PCR amplification program was implemented with the following parameters: initial denaturation at 94°C for 5 minutes, followed by 35 cycles of denaturation at 94°C for 30 seconds, annealing at 35°C for 30 seconds, and final extension at 72°C for 30 seconds. The PCR results were seen on a 1.5% agarose gel stained with ethidium bromide and seen under UV light.

Detection of toxigenic genes in C. perfringens isolates

Multiplex PCR

By using certain sets of primers, the multiplex PCR was carried out with the goal of amplifying four toxigenic genes α (cpa), β (cpb), ε (etx), and ι (iap) (Table 1). The reaction was carried out in a 50µl total volume utilizing 25µl of master mix Amp GT (Takara, Code No. RR310A Emerald), 12 µl of nuclease-free water, 1 µl of an oligonucleotide primer set (Table 1), and 5 µl of DNA. The following 35 cycles of amplification were performed, starting with a denaturation stage at 94°C for 5 minutes. Each cycle consists of the following steps: 94°C for 1 min of denaturation, 55°C for 1 min of annealing, 72°C for 1 min of synthesis, and 72°C for 10 min of the final extension phase (Yoo et al., 1997). Amplicons were separated in a 1.5% agarose gel and stained with ethidium bromide under UV light.

Table (1): Oligonucleotide primers sequences

<table>
<thead>
<tr>
<th>gene</th>
<th>Sequence (for forward primer)</th>
<th>Amplified product</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S rRNA</td>
<td>AAAGATGGGCATCATCATTTCAAC TACCGTCATTATCTTCCCCAAA</td>
<td>279 bp</td>
<td>Wu et al., 2009</td>
</tr>
<tr>
<td>Cpa (Alpha toxin)</td>
<td>GTTGATAGCCGAGGACATGTTAAG CATGTAAGCTCCTGTTCAGCATC</td>
<td>402 bp</td>
<td>YOO et al., 1997</td>
</tr>
<tr>
<td>cpb (Beta toxin)</td>
<td>ACTATACAGACAGATTTCAACC</td>
<td>236 bp</td>
<td></td>
</tr>
<tr>
<td>etx (Epsilon toxin)</td>
<td>TTAGGAGCAGTTAGAAGACTACAGAC AGCTCAACTACTACTACATGTG</td>
<td>541 bp</td>
<td></td>
</tr>
<tr>
<td>iap (Iota toxin)</td>
<td>GCGATGAAAAGCCTACACCCTACT</td>
<td>317 bp</td>
<td></td>
</tr>
<tr>
<td>Cpe (enterotoxin)</td>
<td>GGTGATCCCTCAAGCATATAGTC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ermB</td>
<td>GAA AAG GTA CTC AAC CAA ATA AGT AAC GGT ACT TAA ATT GTT TAC</td>
<td>638 bp</td>
<td>Soge et al., 2009</td>
</tr>
<tr>
<td>bla</td>
<td>ATGAAAGAAGTTCAAAAAATATTTAAGAG TTAGTGCATATGTGCTG</td>
<td>780 bp</td>
<td>Catalán et al., 2010</td>
</tr>
<tr>
<td>tetK</td>
<td>TTATGTTGGTGTAGCTTAGAA AAGGTTAGAAGACTCTTGAAA</td>
<td>382 bp</td>
<td>Gholamiandehko rdi et al., 2009</td>
</tr>
</tbody>
</table>

Uniplex PCR

According to Kaneko et al. (2011), cpe enterotoxin gene Table (1) was detected by uniplex PCR in a total volume of 25 µl, which contained 12.5 µl of Emerald Amp GT master mix ((Takara) Code No. RR310A), 5.5 l of nuclease-free water, 5 µl of DNA template, and 1µl of primer set. This was carried out under particular cycling circumstances, including 35 cycles...
at 94°C for 30 seconds, 55°C for 45 seconds, 72°C for 45 seconds, and a final extension step at 72°C for 10 minutes. The 1.5% agarose gel used to segregate the PCR product was stained with ethidium bromide and exposed to ultraviolet light to see the results.

Detection of resistance genes in *C. perfringens* isolates

bla (Penicillin), *ermB* (erythromycin), and *tetK* (tetracycline) resistance genes were detected using a uniplex PCR assay utilizing specified primers (Table 1). A 25 µl combination containing 5.5 µl of grade water, 1 µl of each set of primer (forward and reverse), 12.5 µl of master mix (Emerald Amp GT), and 5µl of DNA template was used to prepare the three genes. The amplification protocols were adjusted to denaturation at 94°C for five minutes, 35 cycles at 94°C for 30 seconds, and final extension at 72°C for ten minutes. Each primer's annealing temperature was varied, including; (*bla*) at 50°C for 45sec and 72°C for 45 sec for extension (Catalán et al., 2010), erythromycin (*ermB*) at 57°C for 45 sec 72°C for 45 sec (Soge et al., 2009) while tetracycline (*tetK*), at 50°C for 50 sec and 72°C for 40sec (Gholamiandehkordi et al., 2009). PCR product was run on agarose gel (1.5%) and bands were visualized under UV light (Sambrook et al., 1989).

Antibiotic susceptibility of *C. perfringens*

Using the Kirby-Bauer disc diffusion method, the antimicrobial susceptibility of the *C. perfringens* isolates was assessed based on interpretive criteria and previously developed standards by the Clinical and Laboratory Standards Institute [2018].

Nine classes of antibiotics (Oxoid, UK) were used in this test, including; Tetracycline (30 µg) and oxytetracycline (30 µg), Penicillin (oxacillin (5 µg), amoxicillin clavulanic(30µg) and piperacillin (100µg)) Glycopeptide (Vancomycine (30µg)) Quinolones (Ciprofloxacin(5µg) Levofloxine (5µg)), Macrolids (Erythromycin (15µg) and Clarithromycin (15µg)), Lincosamides (Lincomycin (2µg)). Cephalosporine (ceftazidime (30µg) and cefoperazone/sulbactm (105µg)), Aminoglycoside (Gentamiycin (10µg)), Polypektides(colistin sulphate(10µg) and Metronidazole (5µg)(Bioanalyses).

The CLSI guidelines [2018] were used to interpret the diameter of the inhibitory zone. Since there are no break points for *C. perfringens*, the *Staph. aureus* ATCC 25923 strains were employed as the positive control.

The number of antibiotics an isolate is resistant to (a) divided by the total number of antibiotics used in the study (b) [31] is used to construct the Multi-Antibiotic Resistant (MAR) index. Equation displayed below:

\[
\text{MAR Index} = \frac{a}{b}
\]

Biofilm Formation

According to Charlebois et al. (2014), *C. perfringens* blood agar cultures were used to refreshment *C. perfringens* colonies. The revived colonies were injected in 1% glucose, tryptic soy broth and allowed to develop for 24 hours at 37 °C. 96-well polystyrene tissue culture plates were filled with 100µL of cultures after they had been standardized to 0.5 MacFarland. Each isolate was tested in three wells in triplicate. These plates were then incubated for 6 days at 44°C in anaerobic jars.

The formation of the biofilm was evaluated using the crystal violet technique.
Mohamed et al., 2023

(Varga et al., 2008). *C. perfringens* ATCC13124 (Animal health research institute, Dokki-Giza), was used as a positive control because it has been proven to generate biofilm in the past. The media only was used to generate negative control. According to the Stepanovic et al. (2007) biofilm formation was classified by following criteria: Negative biofilm formation if OD ≤ ODc, weak if ODc < OD < 2 × ODc and moderate if 2 × ODc < OD < 4 × ODc. Strong at 4 × ODc < OD., isolates were divided into four categories based on the calculated optical density (OD) values measured at 570 nm: non-biofilm producers, weak biofilm producers, moderate biofilm producers, and strong biofilm producers.

Statistical analysis

Graphpad (version 9.5.2) data processing was used to compare the values. The T-test with a p value ≤ 0.05 indicating a significant difference.

Result

The obtained results in this study showed that, out of 80 sheep and 60 goat, 16 (17.8%) and 9 (15%) of them were suspected to be infected with *C. perfringens* respectively (Fig.1). The microbiological analysis of collected samples cleared that 16.8% and 12.7% of sheep and goat samples (fecal, diarrheal and organs) showed a suspected colony for *C perfringens on Tryptose-sulfite-cycloserine media* (TSC) respectively (Table 2). The intestinal content was the most infected samples in sheep (70%) and goat (50%). The suspected isolates were characterized with black colors on TSC, double hemolytic zones on blood agar and production of opaque halo zone on egg yolk agar (Fig.2a, b and c). Twenty-five isolates (15.1%) suspected to be *Clostridium* spp were subjected for biochemical and PCR analysis. The biochemical profile revealed that all isolates were positive for lecithinase production, gelatin hydrolysis, negative for catalase, indole and lipase test and variable results in sugar fermentation tests (supplementary table 1). PCR results, using species specific 16SrRNA primers confirmed that out of 25 isolates from both sheep and goat samples, 10 were *C. perfringens*. (6 isolates from sheep and 4 from goat) (Fig. 3).

![Fig. (1): Postmortem view of animals infected with C. perfringens (a) Dead animal with bloating symptoms, (b and c) intestinal hemorrhage and bloating](image)
Fig. (2): Colonies of *C. perfringens* on different media. (a) *C. perfringens* colonies in the colour black on tryptose sulphite cycloserine TSC agar. (b) *C. perfringens*’ beta hemolytic activity on 5% sheep blood agar. (c) On egg yolk agar, *C. perfringens* showed good lecithinase activity.

Fig. (3) a. Detection of *C. perfringens*’ species-specific 16S rRNA gene amplified by PCR, lanes (L): 100base pair DNA ladder); Lane (P): effective regulation; Lane (N): Negative regulation Isolates showing 279bp of the 16srRNA encoding gene in lanes (1-15)

Table (2): Incidence of *Clostridium* spp on TSC media

<table>
<thead>
<tr>
<th>animals</th>
<th>No of samples</th>
<th>No of positive – samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Healthy cases</td>
</tr>
<tr>
<td>Sheep</td>
<td></td>
<td>Healthy cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal swap (48)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infected cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diarrheal swaps (22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dead carcasses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidney (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intestinal content(10)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>95</td>
</tr>
<tr>
<td>Goat</td>
<td></td>
<td>Healthy cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fecal swap (27)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infected cases</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diarrheal swaps (25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dead carcasses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liver(8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kidney (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Intestinal content(8)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Total for all samples</td>
<td></td>
<td>166</td>
</tr>
</tbody>
</table>
Out of total 10 isolates 9 isolates were found to carry \textit{cpa} gene alone (Fig.4a) as a major toxin gene, thus were designated as toxin type A. While the remaining one isolate from intestine of dead cases harbored both \textit{cpa} and \textit{cpe} genes, thus were designated as toxin type F (Fig.4a,b). None of the isolates possessed \textit{cpb}, \textit{etx} and \textit{iap} genes indicating the absence of \textit{C. perfringens} toxin type B, C, D or E in sheep and goat samples.

The assay of antimicrobial resistance demonstrated that a large section of \textit{C. perfringens} isolates showed highly resistance (100%) to six antibiotics such as Tetracycline, oxytetracycline, oxacillin, piperacillin, vancomycin, erythromycin, ceftazidime and metronidazole. Intermediate resistance was showed against clarithromycin (40%) and Lincomycin (10%). Amoxicillin clavulanic (20%), colistin/sulphat (40%), cefoperazone/sulbactm and gentamycin (30%), interestingly, maximum sensitivity to ciprofloxacin and levofloxacin (100%) were observed in all isolates (Table.3). all \textit{C. perfringens} isolates showed multidrug resistance patterns. one isolate showed resistance to eight antibiotics with resistance index (0.5) Three isolates showed resistance for 9 antibiotics with resistance index (0.56), two isolates resist to ten antibiotics with resistance index (0.62), four isolates resist for eleven antibiotics with resistance index (0.68).

Table 3: Antibiotic susceptibility profile of \textit{C. perfringens} isolated from sheep and goat

<table>
<thead>
<tr>
<th>Class</th>
<th>antibiotics</th>
<th>abbreviation/ugs</th>
<th>Antibiotic sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracycline</td>
<td>Tetracycline</td>
<td>TE30</td>
<td>10 (100%)</td>
</tr>
<tr>
<td></td>
<td>Oxytetracycline</td>
<td>T30</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>Penicillin</td>
<td>Oxacillin</td>
<td>OX1</td>
<td>10 (100%)</td>
</tr>
<tr>
<td></td>
<td>Amoxicillin clavulanic</td>
<td>AMC30</td>
<td>5 (50%) 2 (20%) 3 (30%)</td>
</tr>
<tr>
<td></td>
<td>Pipracillin</td>
<td>Pr1100</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>Glycopeptide</td>
<td>Vancomycin</td>
<td>VA30</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Ciprofloxacin</td>
<td>CIP5</td>
<td>10 (100%)</td>
</tr>
<tr>
<td></td>
<td>levofoxine</td>
<td>LEV5</td>
<td>10 (100%)</td>
</tr>
<tr>
<td>Macrolids</td>
<td>Erythromycin</td>
<td>E15</td>
<td>4 (40%) 1 (10%) 5 (50%)</td>
</tr>
<tr>
<td></td>
<td>Clarithromycin</td>
<td>CLR15</td>
<td>4 (40%) 1 (10%) 2 (20%)</td>
</tr>
<tr>
<td>Lincosamides</td>
<td>Lincomycin</td>
<td>L2</td>
<td>4 (40%) 3 (30%) 5 (50%)</td>
</tr>
<tr>
<td>Cephalosporine</td>
<td>Ceftazidime</td>
<td>CAZ 30</td>
<td>10 (100%)</td>
</tr>
<tr>
<td></td>
<td>Cefoperazone/sulbactm</td>
<td>CES105</td>
<td>3 (30%) 3 (30%) 4 (40%)</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Gentamycin</td>
<td>CN10</td>
<td>2 (20%) 3 (30%) 5 (50%)</td>
</tr>
<tr>
<td>Polypeptides</td>
<td>Colistine sulphate</td>
<td>CT10</td>
<td>3 (30%) 4 (40%) 3 (30%)</td>
</tr>
<tr>
<td>Flagyl</td>
<td>Metronidazole</td>
<td>MTZ 5</td>
<td>10 (100%)</td>
</tr>
</tbody>
</table>
In this study, PCR results showed that antimicrobial resistance genes (bla, tetK, and ermB) were distributed in most of C. perfringens isolates with the following percentage; β-lactams bla gene was detected in 7 (70%), tetracycline tetK in 3 (30%), while erythromycin ermB were 4 (40%) (Table 4 & Fig 5.a, b, and c).

The measurement of biofilm ability with crystal violet assay showed that biofilm formation can vary among tested isolates of C. perfringens, after 6 day incubation of those intermediate 1 (10%), weak 3 (30%) while 6 (60%) of isolate unable to form biofilm (Fig 6). The statistical analysis showed significant relationship (P≤0.01) between antibiotic resistance and biofilm formation (supplementary table 2).
Mohamed et al., 2023
SVU-IJVS, 6(2): 104-123

Fig. (6): Heat map style, Distribution of toxinotypes, toxin genes, antimicrobial resistance genes and biofilm formation among C. perfringens. The cpa, cpb, etx, iap, and cpe are C. perfringens alpha, beta, epsilon, iota, and enterotoxin genes, respectively. The bla, erm(B); tet(K), are genes associated with, β-lactams, erythromycin, tetracycline, resistances, respectively. M: moderate, W: weak biofilm formation.

Table 4: Toxinotype, Phenotypic resistance pattern and antibiotic resistance genes of C. perfringens

<table>
<thead>
<tr>
<th>No. of C. perfringens samples</th>
<th>Phenotypic resistance pattern</th>
<th>Toxin genes</th>
<th>Species type</th>
<th>Antimicrobial resistance genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CLR15, TE30, AMC30, CAZ30, T30, OX1, CN10, MTZ5, Prl100, VA30, E15</td>
<td>cpa</td>
<td>TypeA</td>
<td>bla</td>
</tr>
<tr>
<td>2</td>
<td>TE30, Prl100, OX1 E15, MTZ5, T3, CAZ30, VA3, L2, CES105</td>
<td>cpa</td>
<td>TypeA</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>AMC30, OX1, E15, CT10, CAZ30, VA30, T30, Prl100, MTZ5, T3</td>
<td>cpa</td>
<td>TypeA</td>
<td>bla</td>
</tr>
<tr>
<td>4</td>
<td>TE30, E15, AMC30, CES105, CLR15, MTZ5, OX1 Prl100, VA30, CAZ30, T30</td>
<td>cpa</td>
<td>TypeA</td>
<td>bla, ermB</td>
</tr>
<tr>
<td>5</td>
<td>Prl100, CT10, CAZ30, T30, L2, E15, VA30, OX1 MTZ5, T3, CLR15</td>
<td>cpa</td>
<td>TypeA</td>
<td>bla ermB</td>
</tr>
<tr>
<td>6</td>
<td>TE30, E15, VA30, OX1, Prl100, MTZ5, T3, CAZ30</td>
<td>cpa</td>
<td>TypeA</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>E15, L2, AMC30, Prl100, CAZ30, OX1 MTZ5, TE30, VA30</td>
<td>cpa</td>
<td>TypeA</td>
<td>bla, tetK</td>
</tr>
<tr>
<td>8</td>
<td>CLR15, MTZ5, VA30, E15, OX1 TE30, Prl100, T3, CAZ30, CT10</td>
<td>cpa</td>
<td>TypeA</td>
<td>bla, tetK</td>
</tr>
<tr>
<td>9</td>
<td>E15, CN10, Prl100, AMC30, TE30, MTZ5, CAZ30, OX1, T30, VA30, L2, CES105</td>
<td>cpa</td>
<td>TypeA</td>
<td>bla, tetK, ermB</td>
</tr>
<tr>
<td>10</td>
<td>E15, TE30, OX1 CLR15, CAZ30, T3, MTZ5, VA30, Prl100</td>
<td>cpa, cpe</td>
<td>TypeA, TypeF</td>
<td>ermB</td>
</tr>
</tbody>
</table>

DISCUSSION

C. perfringens has been constantly associated with various significant systemic and enteric diseases, in both humans and animals, including gas gangrene (Clostridial myonecrosis), food poisoning and non-foodborne diarrhea, and enterocolitis (Raymond et al., 2018). In small ruminants, enterotoxaemia, a severe and acute illness driven by C. perfringens, results in high mortality rates (Hussain et al. 2022).
Phenotypic characterization of *C. perfringens* based on culture and biochemical tests were indicated that (15.1%) of total samples were positive for *C. perfringens*, on Tryptose Sulfite Cycloserine Agar (TSC). Several authors found that TSC agar was one of the most effective media for the quantitative recovery of *C. perfringens* while inhibiting the growth of other facultative anaerobes, (Greco et al. 2005; Downes and Ito 2001) because it includes sodium disulphite, which serves as a sulphite reduction indicator and is indicated by colonies that are black in color, also the addition of egg yolk to TSC tested the lecithinase activity, which was characterized by an opaque halo around colonies, and confirmed it as *C. perfringens*. a D-Cycloserine supplement reduces the amount of nearby bacterial flora, aiding in the selective isolation of *C. perfringens*. It also minimizes the disturbing and spreading blackening around colonies. ISO Committee's (2004) recommended it for isolation and counting *C. perfringens* from foods.

The PCR method played an important role in identification the members of the *Clostridium* genus and to investigate the links between this genus and other pathogenic and non-pathogenic bacteria.

In our study the using of species specific 16SrRNA primers confirmed the presence of *C. perfringens* DNA in ten out of 25 isolates(40%). Different studies supported the role of 16SrRNA gene in *C. perfringens* identification (Ateba et al., 2008 and Moschona et al., 2011). Kumar et al. (2014) detected *C. perfringens* DNA in 59.62% of sheep isolates by PCR while Nazkiet al. (2017) showed that 70.62% of isolates were positive for *C. perfringens* also .Hayati and Tahamtan (2021) noted that out of 167 suspected cases, 61% were positive for *C. perfringens*.

Extracellular enzymes and toxins that *C. perfringens* produces are thought to act together and contribute to its pathogenesis (Ohtani and Shimizu, 2016). Results of multiplex PCR for detection of toxigenic genes revealed that *cpa* gene which responsible for type A (positive only for alpha-toxin) was the predominant gene (90%) in apparently healthy and dead cases of sheep and goat, type A associated with food poisoning worldwide (Guran and Oksuztepe, 2013). Many studies reported the superiority of type A with percentage reached to100 % (Mignaqui et al.,2017 ;Hayati and Tahamtan,2021; Rasool et al., 2017 ; Karunakarnan et al.,2018).

In Egypt, Moustafa et al. (2022) showed that type A(*cpa* gene) was predominated (43.69%) in *C. perfringens* isolates, resembles that Omar et al .(2018) isolated type A (50 %) with no evidence of existence type B and D .As it is obvious that high prevalence of type A (alpha toxin gene), this posse need to further study for this type and incorporate this strains into the vaccine.

C. perfringens is a naturally occurring commensal of the gut that releases a little quantity of toxin that is eliminated by normal intestinal movement or become infected by circulating antibodies (Kiu and Hall ,2018;Uzal et al .,2016).These previous studies confirmed our finding which ascertained 70% of isolates of *C. perfringens* in relation to intestine.

Another toxinotype gene was detected in this study was *cpe* gene which responsible for enterotoxin producing by type F *C. perfringens*, and was investigated with percentages 10%. Freedman et al., 2016 found that only 5%
of C. perfringens isolates worldwide possess the enterotoxin gene (cpe gene). This toxin was associated with human food poisoning and non-food-born diarrhea (Park and Rafii, 2019). cpe is a small pore-forming toxin that is produced by all species of C. perfringens, with the exception of type B, and is either encoded on the chromosome or plasmid. It acts enterotoxically and causes histological damage (Li et al., 2013).

The presence of multidrug resistant C. perfringens in a range of animals and animal products raised serious concerns for the general public's health (Feng et al., 2020). In this study the antibiotic susceptibility profile of C. perfringens type A and F were showed resistance for different families of antibiotics. Phenotypically, our findings were observed a high multidrug resistance (resistance ≥ three classes of antibiotic), these results in consistency to previous study (Wen et al., 2018; Khan et al., 2019; Hussain et al., 2017; Rahaman et al., 2013; Jang et al., 2020; Elgoas et al., 2020; Ahmed et al., 2022).

The predominance of MDR among C. perfringens strains back to two main ways of developing resistance to antibiotics: either by changing its inhered genes or by acquiring resistance genes.

Our study declared the problem of C. perfringens resistance to many types of antibiotics, especially high resistance to tetracycline and penicillin and erythromycin these may be due to the misuse of these antibiotics as medication and growth stimulant in animal feed. In addition, the presence of multiple genes linked to these drugs resistance among various C. perfringens isolates (Slavi et al., 2011).

The demonstration of tetracycline resistance phenotypically in our finding parallels with Hosseinzadeh et al. (2018); Mohiuddin, et al. (2020). The great prevalence may be explained by the ongoing use of tetracycline as a growth stimulant in animal feed that cause increasing prevalence of MDR C. perfringens.

Here, tetk genes was detected in 30% of C. perfringens isolates that coincided with Silva et al. (2014), who mentioned that 27.8% were considered resistance high than Hosseinzadeh et al. (2018) who reported 52% of the C. perfringens type A isolates were tetracycline-resistant in sheep carcasses.

The PCR results revealed that erm (B) gene were harbored in 40% of C. perfringens isolates by PCR while all isolates (100%) showed resistance to erythromycin by disk diffusion method. These may be due to the presence of extra genes that contribute to resistance to these antimicrobials (Lepuschitz, et al., 2019).

β-lactam antibiotics are one of the largest and most important antibiotic including penicillin, cephalosporines, carbapenems and monobactams (Worthington and Melander, 2013) When necrotic enteritis outbreaks occur, these antibiotics are utilized as metaphylactic and prophylactic treatment (Wollschlaege et al., 2009).

In our results, C. perfringens isolates showed a high resistant to β-lactam antibiotics phenotypically (100%) while genotypically, bla gene was found in 70% of isolates. It was worth noting that bla gene the most common resistance genes among isolates aligned with phenotypic detection, Resistance to β-lactams can develop through mutations in genes.
encoding naturally occurring chromosomally encoded-lactamases or by acquisition of foreign DNA encoding new -lactamases (King et al., 2017; Bush and Bradford, 2020).

Our finding showed that our isolates harbored many resistance genes such as; \textit{bla}, \textit{erm}b and \textit{tet}k, these were in agreement with those reported by Anju et al. (2020). While \textit{erm}B results greater than that reached by Abd El-Tawab and Hofy (2021). Our findings showed that some isolates had resistant genes but had a sensitivity phenotype; this could be because the resistance genes were largely not expressed or because these genes had point mutations. (Gholamiandehkordi et al.,2009).

\textit{C. perfringens} could cause antibiotic-associated diarrhoea by creating a biofilm in the small intestine and supporting bacterial persistence during antibiotic therapy (Varga et al., 2008). In our finding \textit{C. perfringens} isolates showed moderate and weak biofilm formation, while Ahmed et al. (2022) demonstrated that \textit{C. perfringens} produce a strong (28\%) and moderate (60\%) biofilm, also Gharieb et al. (2021) reported that 7\% of isolates were weak, 7\% moderate and 10\% strong biofilm producers. The difference in percentages between isolates in ability for biofilm producer back to the molecular processes that control biofilm formation even between strains of the same species (Monds and O’Tool, 2009).

The statistical analysis showed significant relationship (P≤0.01) between antibiotic resistance and biofilm formation (supplementary table 2) , this result supported by Kaplan, (2011) who mentioned that low doses of antibiotics especially penicillin G increased survival of \textit{C. perfringens} cells and increase the ability of biofilm formation and that play a critical role in the development and maintenance of biofilm communities (Daniel et al.,2010)

Conclusion

\textit{C. perfringens} detection and antibiotic resistance pose a threat since it can infect people through contaminated materials. Effective molecular methods, like PCR, provide for quicker identification than other conventional methods, which makes it easier to take early preventative action. These methods are therefore essential for the early detection of these microorganisms. \textit{C. perfringens} isolates shown several virulence and resistance genes to antibiotics that indicated to be harmful for animal and human.

References

Abd El-Tawab AA, El-Hofy FI, Abdelmonem MA, Youssef HS,(2021). Molecular characterization of netB and tpeL virulence factors and antimicrobial resistance genes of Clostridium perfringens isolated from herbs and spices. Latin American Journal of Biotechnology and Life Sciences.06.03.15

A (2016). Isolation of Clostridium perfringens from Goats and Sheep of the Khuzdar district of Balochistan, Pakistan. 9(5), 156-162.

International Journal of Food Microbiol 128(2), 181-188.

Chen J, Rood JI, McClane BA (2011). Epsilon toxin production by Clostridium perfringens type D strain CN3718 is dependent upon the agr operon but not the VirS/VirR. American Society for Microbiology in association with the American Academyof Microbiol.2(6)–300275–11

Cooper KK, Songer JG, (2010). Virulence of Clostridium perfringens in an experimenta l model of poultry
Guran, S & Oksuztepe, G (2013). Detection and Typing of Clostridium perfringens from Retail Chicken Meat Parts. Letters in applied microbiology. 57(1), 77-82 57.
Hayati M, Tahamtan Y (2021). Toxin typing of Clostridium perfringens Associated with Enterotoxaemia in Sheep in Fars Province. Archives of Razi Institute, 76(3), 691

119

perfringens in lambs. Scientific Reports, 12(1), 19715.

Emerging microbes infections, 7(1), 1-15

perfringens toxins involved in mammalian veterinary diseases. The open toxinology journal, 2, 24.

Varga JJ, Therit B , Melville SB (2008) Type IV pili and the CcpA protein are needed for maximal biofilm formation by the gram-positive anaerobic pathogen Clostridium perfringens. Infection and Immunity 76, 4944–495

Wen-Si Hu, Hun Kim Ok, Kyung Koo (2018). Molecular genotyping, biofilm formation and antibiotic resistance of enterotoxigenic Clostridium perfringens isolated from meat supplied to school cafeterias in South Korea, Anaerobe, 52, 115-121

Yoo Hs, Lee SU, Park KY, Park YH (1997). Molecular Typing and Epidemiological Survey of Prevalence of Clostridium perfringens Types by Multiplex PCR. Journal Of Clinical Microbiology. 35(1)228-23